
DESIGN TOOLS FOR ACCELERATING DEVELOPMENT AND
USAGE OF MULTI-CORE COMPUTING PLATFORMS

UNIVERSITY OF MARYLAND

APRIL 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-092

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2014-092 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
STANLEY LIS
Work Unit Manager
Intelligence

 / S /
MARK H. LINDERMAN,Technical Advisor
Computing & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2010 – NOV 2013
4. TITLE AND SUBTITLE

DESIGN TOOLS FOR ACCELERATING DEVELOPMENT AND USAGE
OF MULTI-CORE COMPUTING PLATFORMS

5a. CONTRACT NUMBER
FA8750-11-1-0062

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Shuvra S. Bhattacharyya

5d. PROJECT NUMBER
T2MC

5e. TASK NUMBER
UN

5f. WORK UNIT NUMBER
ML

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, College Park
Office of Research Administration & Advancement
3112 Lee Building MD-005
College Park, MD 20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-092
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Multicore computing technologies are critical to high performance embedded systems. Such technologies are advancing
rapidly in terms of the diversity of available multicore platforms, and the scale and heterogeneity of computing resources
available on multicore-equipped devices. However, development of high performance signal processing software for
multicore computing platforms is a complex process. Due to this complexity, designers face major limitations in
effectively deploying high performance embedded solutions based on current design methodologies and tools. Key
factors that complicate this process include challenges in exposing and exploiting application parallelism; heterogeneity
and complex trade-offs among available multicore platforms; and the large scale of modern embedded software
applications. To help designers experiment more effectively with alternative multicore software strategies, and to develop
efficient and reliable embedded software implementations, this project has contributed systematic design methods for
formal description of multiprocessor platforms, and optimized mapping of signal processing code blocks onto
multiprocessor architectures.
15. SUBJECT TERMS
Multicore processors, signal processing, embedded systems, dataflow graphs.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STANLEY LIS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

32

TABLE OF CONTENTS

LIST OF FIGURES .. II
 LIST OF TABLES II

1. SUMMARY 1
2. INTRODUCTION .. 1
3. METHODS, ASSUMPTIONS, AND PROCEDURES .. 2
3.1. DATAFLOW INTERCHANGE FORMAT .. 2
3.2. DATAFLOW MODELING FOR SIGNAL PROCESSING SYSTEMS .. 2
3.3. THE DIF LANGUAGE (TDL) .. 3
3.4. SYNCHRONIZATION GRAPHS .. 4
4. RESULTS AND DISCUSSION ... 4
4.1. OBJECTIVES ... 4
4.2. HARDWARE DESCRIPTION OF MULTIPROCESSOR SYSTEMS ... 5
4.2.1. CLT DESIGN FLOW .. 5
4.2.2. DEIPS METHODOLOGY ... 5
4.3. SYSTEMATIC MAPPING OF CODE BLOCKS ONTO HARDWARE .. 6
4.3.1. MAPPING METHODS IN THE CLT DESIGN FLOW .. 6
4.3.2. HIERARCHICAL MAPPING OF MULTIDIMENSIONAL DATAFLOW SPECIFICATIONS 7
4.4. CUSTOMIZATION AND DEMONSTRATION BASED ON VIDEO SURVEILLANCE AND PATTERN RECOGNITION
COMPUTATIONS 8
4.4.1. GAUSSIAN FILTERING .. 8
4.4.1.1. SIMULATION ... 10
4.4.1.2. IMPLEMENTATION ... 12
4.4.2. INTEGRAL HISTOGRAM COMPUTATION ... 13
5. CONCLUSIONS .. 17
6. REFERENCES .. 18
A. APPENDIX A — PUBLICATIONS AND PRESENTATIONS .. 21
B. APPENDIX B — ABSTRACTS ... 22
7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 26

i

LIST OF FIGURES

Figure 1. An example of a DH for an MDSDF specification. ... 9
Figure 2. Dataflow graph of an image processing application for Gaussian filtering 10
Figure 3. Multidimensional dataflow graph for image histogram computation. ... 14
Figure 4. Performance comparisons for different image sizes. .. 16

LIST OF TABLES

Table 1. Execution time of the Gaussian filter actor (GF) and the Gaussian filtering application (App)
during simulation. .. 12

Table 2. Execution time of the Gaussian filter actor (GF) and the Gaussian filtering application (App)
with and without GPU acceleration. ... 13

Table 3. Application modes. ... 15
Table 4. Grid sizes (upper) and block sizes (lower) derived from DH in our experiments. 15

ii

1. SUMMARY

Multicore computing technologies are critical to high performance embedded systems. Such

technologies are advancing rapidly in terms of the diversity of available multicore platforms, and
the scale and heterogeneity of computing resources available on multicore-equipped devices.
However, development of high performance signal processing software for multicore computing
platforms is a complex process. Due to this complexity, designers face major limitations in
effectively deploying high performance embedded solutions based on current design methodologies
and tools. Key factors that complicate this process include challenges in exposing and exploiting
application parallelism; heterogeneity and complex trade-offs among available multicore platforms;
and the large scale of modern embedded software applications. To help designers experiment more
effectively with alternative multicore software strategies, and to develop efficient and reliable
embedded software implementations, this project has contributed systematic design methods for
formal description of multiprocessor platforms, and optimized mapping of signal processing code
blocks onto multiprocessor architectures.

The project has involved the following inter-related thrusts.

1. Hardware description of multiprocessor systems. We have developed a formal
framework for efficiently capturing and analyzing the underlying hardware
structures in multicore platforms at a high level of abstraction.

2. Systematic mapping of code blocks onto hardware. Building on our novel
hardware description approach, we have developed algorithms and tools for
systematically mapping signal processing code blocks onto multicore platforms.

3. Customization and demonstration based on video surveillance and pattern
recognition computations. To validate, refine, and demonstrate our description
and mapping approaches, we have experimented with key algorithms and
application subsystems in the domains of video surveillance and pattern
recognition.

2. INTRODUCTION

Modeling DSP applications through coarse-grain dataflow graphs is widespread in the

digital signal processing (DSP) design community, and a variety of dataflow models have been
developed for dataflow-based design. A growing set of DSP design tools support such dataflow
semantics. Furthermore, Turing-complete DSP-oriented dataflow modeling approaches are
available to provide for full expressibility within the dataflow framework.

In this project, we have advanced dataflow-based design methodologies for design and
implementation of high-performance, multicore signal processing systems. We have applied
dataflow concepts and methods to develop new methods for hardware description of multicore
systems, and systematic mapping of code blocks onto hardware. We have demonstrated these new
methods through extensive experimentation with key algorithms and application subsystems in the
domains of video surveillance and pattern recognition.

In this project, we have built on our previous work on the dataflow interchange format (DIF)
[Hsu 2005]. The DIF toolset provides a foundation for exploring techniques that bridge
heterogeneous dataflow models and architectures. A critical need in transferring technology across
these different dataflow-based tools and their targeted platforms is that of a standard, vendor-

Approved for Public Release; Distribution Unlimited.
1

independent language and an associated package with intermediate representations and efficient
implementations of dataflow analysis and optimization algorithms. DIF is designed for this purpose
and is proposed to be a standard language for specifying and working with dataflow-based DSP
applications across all relevant dataflow modeling approaches that are related to DSP system
design.

In order to provide the DSP design industry with a convenient front-end to use DIF and the
DIF package, automating the exporting and importing processes between DIF and design tools is an
essential feature. Although problems related to exporting and importing are design-tool-specific,
many practical implementation issues are quite common among different design tools. DIF and the
associated DIF package have been designed to help reuse effort that is related to these common
issues so that developers and users of design tools can focus on the novel features and unique
constraints associated with their design problems.

The DIF framework therefore provides a useful foundation for developing novel high
performance computing capabilities that address the performance and productivity challenges of
high performance signal processing applications.

3. METHODS, ASSUMPTIONS, AND PROCEDURES

3.1. Dataflow Interchange Format

Development of high performance embedded signal processing software for multicore
computing platforms is a complex process. Key factors that complicate this process include
challenges in exposing and exploiting application parallelism; heterogeneity and complex trade-offs
among available multicore platforms; and the large scale of modern embedded software
applications [Bhattacharyya 2013]. To enable designers to experiment more effectively with
alternative multicore software strategies, and to develop efficient and reliable embedded software
implementations, development of new design tools is critical for capturing and accurately targeting
the constraints of state-of-the-art multicore systems.

In this work, we have built on the Dataflow Interchange Format (DIF) Project [Hsu 2005],
which is a core research focus of the Maryland DSPCAD Research Group [DSPCAD 2013] at the
University of Maryland. The DIF Project provides a valuable infrastructure for developing,
experimenting with, and integrating computer-aided design techniques for embedded signal
processing systems. In this project, we have developed capabilities in the DIF package to
demonstrate the techniques developed in this research, and provide a basis for integrating the
techniques into practical design flows for optimized implementation of multicore signal processing
software.

3.2. Dataflow Modeling for Signal Processing Systems
In recent years, dataflow models have become increasingly popular for design and

implementation of signal processing systems (e.g., see [Bhattacharyya 2013]). Through their
connections to computation graphs [Karp 1966] and Kahn process networks [Kahn 1974, Lee
1995], signal-processing-oriented dataflow models of computation (SDMs) build on a strong
theoretical foundation. Additionally, through their natural correspondence to signal flow graphs,
which are used widely by signal processing algorithm designers, SDMs provide an intuitive
framework for high-level application modeling and programming. Dataflow methods and tools have
been developed previously by the DoD. For example, the processing graph method (PGM) has been
developed extensively at NRL [Stevens 1997], and has influenced industrial tools for high-

Approved for Public Release; Distribution Unlimited.
2

performance embedded signal processing, such as the Autocoding Toolset from MCCI [Robbins
2002].

In SDMs, as in other forms of dataflow, applications are represented by directed graphs in
which vertices, called actors, correspond to computational tasks, and each edge corresponds to a
logical buffer that stores data values as they pass from the output of one actor to the input of
another. In SDMs, dataflow actors can represent computations of arbitrary complexity as long as the
interfaces of the computations conform to dataflow semantics. Intuitively, dataflow semantics in this
context means that actors produce and consume data from their input and output edges,
respectively, and each dataflow actor executes as a sequence of discrete units of computation, called
firings, where each firing depends on some well-defined amount of data from the input edges of the
associated actor. The restrictions and mathematical characterizations associated with this general
notion of well-defined amount of data are primary aspects that distinguish alternative SDMs from
one another.

Unlike dataflow architectures [Dennis 1975], which embed dataflow graphs directly in
hardware, SDMs apply dataflow purely as a programming model. Because of the concurrency and
other forms of application structure exposed by signal processing dataflow graph representations,
SDM tools have significant potential for high-level optimization, and efficient retargetability across
diverse target platforms. For these reasons, along with their portability and intuitive appeal, SDMs
have been applied to many application areas and a variety of target platforms (e.g., see
[Bhattacharyya 2013]. As system complexity and the diversity of components in embedded signal
processing platforms increases, designers are expressing more and more types of behavior in
dataflow languages, and even combining different dataflow models to describe individual
applications.

3.3. The DIF Language (TDL)

The dataflow interchange format (DIF) is proposed as a standard approach for specifying

and integrating arbitrary dataflow-based semantics for signal processing system design [Hsu 2005].
The DIF Package (TDP) [Hsu 2005, Shen 2012] is a software tool, developed in conjunction with
DIF, for modeling and analyzing signal processing oriented dataflow graphs. The DIF Language
(TDL) is an accompanying textual design language for high-level specification of signal-
processing-oriented dataflow graphs. The TDL syntax for dataflow graph specification is designed
based on dataflow theory and is independent of any specific design tool.

Because dataflow-oriented design tools in the signal processing domain are fundamentally
based on actor-oriented design, TDL provides a syntax to specify tool-specific actor information,
which ensures that TDP can extract all relevant information from a given design tool.

TDL is designed as a standard approach for specifying signal processing dataflow graphs at
a high level of abstraction that is suitable for both programming and interchange. TDL provides a
unique set of semantic features for specifying graph topologies, hierarchical design structure,
dataflow-related design properties, and actor-specific information. TDP accompanies TDL, and
provides a variety of intermediate representations, analysis techniques, and graph transformations
that are useful for working with dataflow graphs that have been captured by TDL. For example,
TDP includes a transformation that converts SDF (synchronous dataflow) representations into
equivalent homogeneous SDF (HSDF) representations based on the algorithm introduced in [Lee
1987]. Such a transformation can in general expose additional concurrency that is not represented
explicitly in the original SDF graph.

Compared to other design tools for representation and transformation of dataflow graphs —
such as SysteMoC [Haubelt 2007], PeaCE [Kwon 2004], and stream-based functions [Kienhuis

Approved for Public Release; Distribution Unlimited.
3

2001] — a distinguishing feature of TDP is its support for representing and manipulating different
specialized forms of dataflow semantics. This arises from the emphasis in TDL on recognizing a
wide variety of important forms of dataflow semantics along with relevant modeling details that are
required to meaningfully analyze those semantics. Due to this feature of TDP, its capabilities are
highly complementary to those of existing dataflow-based frameworks. In particular, TDL and TDP
can be used to capture and analyze, respectively, representations from many of these frameworks.

3.4. Synchronization Graphs

In this project, we have also leveraged our work on the synchronization graph modeling

methodology (e.g., see [Sriram 2009]. Synchronization graphs provide formal methods for
integrated representation and analysis of dataflow graph application behavior together with
schedules (software structures for coordinating the execution of computational tasks across shared
processors) that carry out execution of dataflow behaviors on multiprocessor hardware.

Intuitively, a synchronization graph can be viewed as a graph-theoretic representation of a
self-timed multiprocessor schedule for a synchronous dataflow graph. Here, by synchronous
dataflow, we mean a specialized variant of dataflow in which the number of tokens produced and
consumed on each actor port is constant [Lee 1987], and by a self-timed multiprocessor schedule,
we mean a multiprocessor schedule in which the assignment of actors to processors and the
execution ordering of actors that are mapped to the same processor are fixed at compile time [Lee
1989]. Self-timed scheduling differs from static scheduling in that in self-timed scheduling, the
actual time at which an actor invocation executes is determined at run time through appropriate
synchronization. Such a scheduling model provides a framework for exploiting statically known
application structure (through the compile time assignment and ordering), while providing for
robustness when execution times are not known precisely or exhibit some amount of run-time
variation.

Self-timed execution of synchronous dataflow specifications is widely used in parallel
execution of signal processing applications (e.g., see [Bhattacharyya 2013]), and has provided a
valuable starting point for our work in this project. Synchronization graphs provide a formal
mathematical framework for analyzing, optimizing, and implementing this class of parallel signal
processing systems.

4. RESULTS AND DISCUSSION

4.1. Objectives
Our project has centered on the following three key objectives, which involve the

development of high level tools for formal description of multiprocessor platforms, systematic
mapping of signal processing code blocks onto multiprocessor architectures, and in-depth
application case studies in the domains of video surveillance and pattern recognition based on these
tools.

1. Hardware Description of Multiprocessor Systems.
2. Systematic Mapping of Code Blocks onto Hardware.
3. Customization and Demonstration based on Video Surveillance and Pattern

Recognition Computations.

Approved for Public Release; Distribution Unlimited.
4

4.2. Hardware Description of Multiprocessor Systems

4.2.1. CLT Design Flow
In this project, we have developed a novel design flow, based on core functional dataflow

(CFDF) graphs [Plishker 2008a] for integrated simulation and implementation of signal, image, and
video processing applications on state-of-the-art multicore platforms. Our design flow builds on our
previously developed work on the lightweight dataflow (LWDF) [Shen 2010] and targeted dataflow
interchange format (TDIF) tools [Shen 2012]. Because of its strong connections to CFDF, LWDF,
and TDIF concepts, we refer to our new design flow as the CFDF-LWDF-TDIF design flow or CLT
design flow. The CLT design flow provides a structured design process, based on formal dataflow-
based models of computation, for efficient, high-confidence mapping of signal, image, and video
processing systems onto multicore platforms. Our development of the CLT design flow has
involved progress on all of the directions outlined in Section 4.1 (e.g., see Section 4.3.1 and Section
4.4.1 for more details).

4.2.2. DEIPS Methodology
In this project, we have developed a methodology, based on our recently developed dataflow

schedule graph (DSG) model [Wu 2011], for design and implementation of embedded image
processing systems. We refer to this as the DEIPS (DSG-based design and implementation of
Embedded Image Processing Systems) methodology. Our developments on the DEIPS
methodology are reported in [Wu 2013].

We have developed the DEIPS methodology in the context of a state-of-the-art
multiprocessor system-on-chip (MPSoC) platform that is relevant in the embedded image
processing domain — the Texas Instruments (TI) TMS320C6678L embedded multicore digital
signal processor platform, using the TI TMS320C6678L Evaluation Module [TI 2012].

The underlying multicore processor of the targeted TMS320C6678L device contains eight
cores that can run at 1 Gigahertz (GHz) each. Each core has L1 cache and L2 cache. The L1 cache
is made up of separate parts for program and data, while the L2 cache provides unified space for
program and data. The memory subsystem includes 512 Megabyte (MB) memory double data rate 3
(DDR3), which we employ as local memory, and 4 MB SRAM (MSMCSRAM), which we employ
as shared memory among processors. Programmers can allocate memory space in the L2SRAM,
MSMCSRAM or DDR3 through heaps that handle them. This platform provides significant
flexibility to programmers and high level design tools to manage thread definitions, memory
partitioning for threads, and inter-processor communication.

In the DEIPS methodology, we map each thread to a Sequential Dataflow Schedule Graph
(SDSG) [Wu 2011]. The memory usage of each thread, which can be analyzed or simulated
efficiently using the underlying SDSG model, is then used to determine the size of the
corresponding block of partitioned memory. Additionally, we implement two pairs of special actors
to provide more accurate DSG representations targeted to the multicore TI platform. These actors
implement data synchronization and control synchronization, respectively, on the TI platform.

Inter-thread interactions are modeled as communication and synchronization actors between
pairs of communicating SDSGs, and the resulting system-level schedules are modeled as CDSGs.
When more than one processor is employed in the schedule, the CDSG model includes more than
one SDSG and provides the nexus of the different SDSGs to coordinate and synchronize their
concurrent execution.

The schedule control actors snd and rec are used to synchronize pairs of communicating
SDSGs. Such implementation of interprocessor communication is complicated on the targeted TI

Approved for Public Release; Distribution Unlimited.
5

platform since it requires handshaking involving heaps in shared memory, and creation of correct
heap-based communication mechanisms. To simplify interprocessor communication from the
designer’s point of view, and to make such communication more reliable, we integrate the
handshaking functionality into pre-defined, reusable, TI-targeted snd and rec actor components.
Designers can then integrate such interprocessor communication components as needed in their
DSG structures without having to bother with the low level implementation details associated with
interprocessor communication on the targeted device. Each time a snd or rec is instantiated in a
CDSG, the associated inter-processor communication is effectively instantiated and appropriately
configured based on the surrounding CDSG context. Similarly, data synchronization is modeled in
the CDSG through appropriate actors that implement the required communication functionality on
the targeted TI device.

For more details on the DEIPS methodology and its application to Texas Instruments
multicore digital signal processors, we refer the reader to [Wu 2013].

4.3. Systematic Mapping of Code Blocks onto Hardware

4.3.1. Mapping Methods in the CLT Design Flow
In the system optimization step of the CLT design flow (See Section 4.2.1), we enter the

implementation phase, which is where TDIF comes into play. There are two main kinds of
optimization techniques supported in the TDIF framework. One is cross-platform implementation
for actor-level optimization, and the other is scheduling and mapping for system or subsystem
optimization.

After we identify the bottleneck actors, cross-platform implementation of actors allows
designers to efficiently experiment with alternative actor realizations on different kinds of
platforms, such as graphic processing units (GPUs), multicore programmable digital signal
processors (PDSPs), and field programmable gate arrays (FPGAs), to help derive a platform or mix
of platforms that will be strategic in terms of the given design constraints (e.g., constraints
involving cost, performance, and energy consumption). During this process, much of the code from
the simulation phase can be reused. Only the functionality associated with selected actor modes
(e.g., bottleneck modes of bottleneck actors) needs to be rewritten or selected from available
platform-specific libraries.

The TDIF environment currently supports C-like programming languages — e.g., languages
that are targeted to Central Processing Unit (CPU), GPU and multicore PDSP platforms. The GPU-
based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the Compute
Unified Device Architecture (CUDA) programming language [NVIDIA 2007], which can be
viewed as an extension of C. The multicore PDSP capabilities currently in TDIF are oriented
towards Texas Instruments (TI) PDSP devices, and are interoperable with the multithreading
libraries provided by TI [TI 2012].

TDIF also provides a library of First-In-First-Out (FIFO) implementations that are
optimized for different platforms. These FIFOs all adhere to a common set of CFDF-based
application programming interfaces (APIs) so that they can be integrated in a manner that is
consistent with the CFDF graph model from the simulation phase. After simulation-mode FIFOs are
mapped into platform-specific FIFOs, optimized actors can communicate in a manner that is
efficient, and consistent with the designer’s simulation model.

The scheduling strategy employed determines the execution order of the actors while the
mapping process, which is typically coupled closely with scheduling, determines which resource

Approved for Public Release; Distribution Unlimited.
6

each actor is executed on. TDIF provides the generalized schedule tree (GST) [Ko 2007]
representation to facilitate implementation of and experimentation with alternative scheduling and
mapping schemes for system optimization. GSTs are ordered trees with leaf nodes and internal
nodes. An internal node of a GST in TDIF represents iteration control (e.g., a loop count) for an
iteration construct that is to be applied when executing the associated subtree. On the other hand, a
GST leaf node includes two pieces of information that are used to carry out individual actor firings
— one is an actor of the associated dataflow graph, and the other is mapping information associated
with the actor. The GST representation provides designers with a common interface through with
topological information and algorithms for ordered trees can be applied to access and manipulate
schedule elements.

Execution of a GST involves traversing the tree to iteratively enable (and then execute, if
appropriate) actors that correspond to the schedule tree leaf nodes. Note that if actors are not
enabled, the GST traversal simply skips their invocation. Subsequent schedule rounds (and thus
subsequent traversals of the schedule tree) will generally revisit actors that were unable to execute
in the current round.

For schedule construction in the implementation phase, the CFDF graph decomposition
approach of [Plishker 2009] is integrated in the TDIF framework. This approach allows designers to
decompose a CFDF graph into a set of SDF subgraphs. Each SDF subgraph can be scheduled by
existing static scheduling algorithms, such as an APGAN-based scheduler [Bhattacharyya 1997]
(APGAN stands for “acyclic pairwise grouping of adjacent nodes” — for more details, we refer the
reader to [Bhattacharyya 1997]). The GST schedule trees that result from scheduling these SDF
subgraphs are then systematically combined into a single, “execution-rate-balanced” GST using
profiling and instrumentation techniques.

4.3.2. Hierarchical Mapping of Multidimensional Dataflow
Specifications

In this project, we have developed a structured design method based on multidimensional
synchronous dataflow (MDSDF) graphs for hierarchical mapping of DSP systems onto parallel
architectures. Our developments on this new design method are reported in [Wang 2012].

MDSDF is a generalization of synchronous dataflow to multiple dimensions and provides an
effective model for a variety of multidimensional DSP systems that have statically structured
dataflow characteristics [Murthy 2002]. Our methods apply dataflow transformations to exploit data
parallelism hierarchically for multidimensional dataflow graphs. Our methods provide a systematic
approach for exposing and exploiting parallelism from multidimensional dataflow specifications
across different levels of the specification hierarchy. We demonstrate our proposed new modeling
techniques and design methods by applying them to optimize implementations on the NVIDIA
graphics programming unit (GPU) programming model [NVIDIA 2012].

Recently-introduced data parallel programming environments emphasize support for
exploiting multi-level or hierarchical parallelism, where parallelism is exploited programmatically
at multiple levels of granularity. For example, CUDA [NVIDIA 2012] provides a two-level thread
hierarchy, where a set of threads makes up a thread block, and multiple thread blocks form a grid.
Such hierarchical support for representing parallelism is important for multidimensional signal
processing applications, where parallelism exists in different forms at different levels of the design
hierarchy (DH) (e.g., interframe, inter-block, and inter-pixel parallelism in video processing).

In this project, we have built on the MDSDF model of computation, and develop a design
method to represent and apply parallelism hierarchically for multidimensional dataflow graphs.

Suppose that we have an N -level hierarchical parallel programming model (platform
hierarchy) P, which we want to use to implement a given MDSDF graph G. For example, such a

Approved for Public Release; Distribution Unlimited.
7

parallel programming model could be used as a target for code generation or could be used for an
implementation that is derived from hand based on a functional reference (“golden model”) that is
developed in terms of the MDSDF specification. We develop an N-level hierarchical dataflow
graph transformation approach to achieve such a mapping from MDSDF to P. We refer to N in this
context as the platform depth.

First, we introduce some definitions and notation related to hierarchical dataflow graphs. A
supernode s in a dataflow graph G = (V, E) is an actor (i.e., 𝑠 ∈ 𝑉) that is associated with a “nested
dataflow graph” H(s), where execution of s in G corresponds to execution of H(s). In general, not
all actor ports in H(s) are connected in H(s) (i.e., not all of them connect to edges within H(s)). The
“unconnected actor ports” are referred to as the interface ports of H(s), and these ports are in one-to-
one correspondence with the ports of actor s.

If G is the “top” of the DH (i.e., G is not encapsulated by a supernode in another graph),
then we say that the nesting level (or simply level) of G, denoted λ(G), is 1. Similarly, for each
supernode s in G, λ(H(s)) = 2; for each supernode t in any of these H(s)’s, λ(H(t)) = 3, and so on.

The DHs in our model are non-overlapping, which means that for all supernodes within a
DH (i.e., across all levels), their corresponding nested dataflow graphs do not share any actors or
edges. Furthermore, we assume that these DHs are finite, which means that the levels (λ values) are
all bounded.

We refer to the maximum λ value in a DH D as the depth δ of D. For each 𝑖 ∈ {1, 2,⋯ , 𝛿},
we denote by Li the set of all actors that are “at level i”. That is, L1 = V, and for i = 2, 3, . . . , δ,

 Li = ∪{Vh(s)|λ(H(s)) = i}, (1)

where Vh(s) denotes the set of actors in the nested dataflow graph H(s).
DHs in our decomposition approach can be constructed by designers as they explore

alternative methods to structure the hierarchies such that they map efficiently into the parallelism
hierarchy supported by the targeted platform. The key constraint in construction of a DH D is that
the depth of each candidate DH should equal the platform depth.

We develop a systematic method, called multidimensional DH mapping, to specify and map
these DHs into hierarchies of smaller graphs, which can be mapped to successively lower levels of
the targeted platform hierarchy. Figure 1 illustrates this approach for an MDSDF graph. The
designer can construct the DHs bottom-up or top-down. At each ith level (i > 1) of the DH, one or
more groups (clusters) of connected actors are combined into units that are viewed as individual
supernodes from level (i−1). Groups of actors, including supernodes, which are contained within
such clusters are then scheduled together by adapting techniques for SDF-based and MDSDF-based
clustered graph analysis and scheduling [Bhattacharyya 1996, Murthy 2002].

Use of these techniques to systematically derive production and consumption tuples
associated with actors at different levels of the design hierarchy, as well as firing vectors, which
determine the relative rates at which different actors in a cluster execute, is illustrated in Figure 1.

4.4. Customization and Demonstration based on Video Surveillance
and Pattern Recognition Computations

4.4.1. Gaussian Filtering
In this section, we present a discussion of customizations, demonstrations and associated

experimental findings in connection with the CFDF-LWDF-TDIF (CLT) design flow, which is

Approved for Public Release; Distribution Unlimited.
8

discussed in Section 4.2.1. To demonstrate the CLT design flow, we experiment with an image
processing application centered on Gaussian filtering. Two-dimensional Gaussian filtering is a
common kernel in image processing that is used for preprocessing. Gaussian filtering can be used to
denoise an image or to prepare for multiresolution processing. A Gaussian filter is a filter whose
impulse response is a Gaussian curve, which in two dimensions resembles a bell.

For filtering in digital systems, the continuous Gaussian filter is sampled in a window and
stored as coefficients in a matrix. The filter is convolved with the input image by centering the
matrix on each pixel, multiplying the value of each entry in the matrix with the appropriate pixel,
and then summing the results to produce the value of the new pixel. This operation is repeated until
the entire output image has been created.

The size of the matrix and the width of the filter may be customized according to the
application. A wide filter will remove noise more aggressively but will smoothen sharp features. A
narrow filter will have less of an impact on the quality of the image, but will be correspondingly
less effective against noise.

Figure 1. An example of a DH for an MDSDF specification.
Approved for Public Release; Distribution Unlimited.

9

Figure 2. Dataflow graph of an image processing application for Gaussian filtering

Figure 2 shows a simple application based on Gaussian filtering. It reads bitmap files in tile
chunks, inverts the values of the pixels of each tile, runs Gaussian filtering on each inverted tile, and
then writes the results to an output bitmap file. The main processing pipeline is single-rate in terms
of tiles, and can be statically scheduled, but after initialization and end-of-file behavior is modeled,
there is conditional dataflow behavior in the application graph, which is represented by square
brackets in the figure.

Such conditional behavior arises, first, because the Gaussian filter coefficients are
programmable to allow for different standard deviations. The coefficients are set once per image —
coefficient_filter_reader produces a coefficient matrix for only the first firing. To
correspond to this behavior, the gaussian_filter actor consumes the coefficient matrix only
once, and each subsequent firing processes tiles. Such conditional firing also applies to
bmp_file_reader, which produces tiles until the end of the associated file is reached.

As shown in Figure 2 our dataflow graph of the image processing application for Gaussian
filtering is specified as a CFDF graph. The graph includes five actors:

• bmp_file_reader,
• coefficient_filter_reader,
• invert,
• gaussian_filter, and
• bmp_file_writer.

We first use the LWDF programming methodology, integrated with the C language, to
construct the system for simulation.

It should also be noted that the tiles indicated in Figure 2 do vary somewhat between edges.
Gaussian filtering applied to tiles must consider a limited neighborhood around each tile (called a
halo) for correct results. Therefore, tiles produced by bmp_file_reader overlap, while the halo
is discarded after Gaussian filtering. As a result, non-overlapping tiles form the input to
bmp_file_writer.

4.4.1.1. Simulation
In our design, the bmp_file_reader actor is specified using two CFDF modes, and one

output FIFO. The two modes are the process mode and the inactive mode. It is the actor
programmer’s responsibility to implement the functionality of each mode. In the process mode,
the bmp_file_reader reads image pixels of a given tile and the corresponding header
information from a given bitmap file, and produces them to its output FIFOs. Then the actor returns
the process mode as the mode for its next firing. This continues for each firing until all of the
data has been read from the given bitmap file. After that, the actor returns the inactive mode,
which is a terminal mode. Arrival at a terminal mode indicates that the actor cannot be fired

Approved for Public Release; Distribution Unlimited.
10

anymore until its current mode is first reset externally (e.g., by the enclosing scheduler).
The coefficient_filter_reader actor is also specified in terms of two modes and

one output FIFO. The two modes are again labeled as the process mode and the inactive
mode, and again, the inactive mode is a terminal mode. On each firing when it is not in the
inactive mode, the coefficient_filter_reader actor reads filter coefficients from a
given file, stores them into a filter coefficient vector (FCV) array, and produces the coefficients onto
its output FIFO. The FCV V has the form

V=(sizeX,sizeY,c0,c1,…,cn−1), (4)

where sizeX and sizeY denote the size of the FCV represented in two dimensional format; each
ci represents a coefficient value; and n = sizeX × sizeY. After firing, the actor returns the
process mode if there is data remaining in the input file; otherwise, the actor returns the
inactive mode.

The bmp_file_writer actor contains only a single mode and one input FIFO. The
single mode is called the process mode. Thus, the actor behaves as an SDF actor. On each firing,
the bmp_file_writer actor reads the processed image pixels of the given tile and the
corresponding header information from its input FIFOs, and writes them to a bitmap file, which can
later be used to display the processed results. The actor returns the process mode as the next
mode for firing.

The gaussian_filter actor contains one input FIFO, one output FIFO and two modes:
the store coefficients (STC) mode and the process mode. On each firing in the STC mode, the
gaussian_filter actor consumes filter coefficients from its coefficient input FIFO, caches
them inside the actor for further reference, and then returns the process mode as the next mode
for firing. In the process mode, image pixels of a single tile will be consumed from the tile input
FIFO of the actor, and the cached filter coefficients will be applied to these pixels. The results will
be produced onto the tile output FIFO. The actor then returns the process mode as the next mode
for firing. To activate a new set of coefficients, the actor must first be reset, through external
control, back to the STC mode.

The invert actor also contains a single mode called the process mode, and contains one
input FIFO and one output FIFO. Because it has only one mode, it can also be viewed as an SDF
actor. On each firing, the invert actor reads the image pixels of the given tile from its input
FIFOs, inverts the color of the image pixels, and writes the processed result to its output FIFO. The
actor always returns the process mode as the next mode for firing.

After designing the actors, as described above, we connect the actors with the appropriate
FIFOs. For our simulation setup, we use 256x256 images decomposed into 128x128 tiles, and
filtered with different sizes of matrices for Gaussian filter coefficients. The CFDF canonical
scheduler [Plishker 2008b] is used to run the simulation on 3 GHz Intel Xeon processors. The
profiling results are reported in Table 1. As can be observed from this table, increases in the matrix
size lead to increases in the processing time for the Gaussian filter and the overall application.
Furthermore, the Gaussian filter actor accounts for most of the processing time in the application in
all cases. Thus, if we can optimize the Gaussian filter actor, the performance of the overall
application will be enhanced.

Approved for Public Release; Distribution Unlimited.
11

Table 1. Execution time of the Gaussian filter actor (GF) and the Gaussian filtering application
(App) during simulation.

Filter size 5X5 11X11 21X21 25X25 37X37
GF. CPU (ms) 50 280 1080 1540 3310
App. CPU (ms) 70 295 1100 1550 3340

Percentage 71.4% 95% 98.2% 99.3% 99.1%

4.4.1.2. Implementation
From the experiments discussed in the previous section, we identified the bottleneck actor to

be the Gaussian filtering actor. To improve the performance of this actor, we apply the cross-
platform implementation features of TDIF. In particular, we use TDIF to experiment with a new
version of the implementation in which the Gaussian filtering actor is executed on a graphics
processing unit (GPU).

GPUs provide a class of high performance computing platforms that provide high peak
throughput processing for certain kinds of regularly structured computations [Owens 2008].
Typically, a GPU architecture is structured as an array of hierarchically connected cores. Cores tend
to be lightweight as the GPU will instantiate many of them to support massively parallel graphics
computations. Some of the memories are small and scoped for access to small numbers of cores, but
can be read or written in one or just a few cycles. Other memories are larger and accessible by more
cores, but at the cost of longer read and write latencies.

Using TDIF, we explore the use of GPUs to accelerate the gaussian_filter actor. We
employ an NVIDIA GTX 285 GPU and employ the CUDA programming environment to specify
the internal functionality of the gaussian_filter actor for GPU acceleration. This CUDA-
based actor implementation is integrated systematically into the overall application-level CFDF
graph through the TDIF design environment. We apply actor-level vectorization to exploit data
parallelism within the actor on the targeted GPU.

Fundamentals of vectorized execution for dataflow actors have been developed by Ritz [Ritz
1993] and explored further by Zivojnovic [Zivojnovic 1994], Lalgudi [Lalgudi 2000], and Ko [Ko
2008]. In such vectorization, multiple firings of the same actor are grouped together for execution to
reduce the rate of context switching, enhance locality, and improve processor pipeline utilization.
On GPUs, groups of vectorized firings can be executed concurrently to achieve parallel processing
across different invocations of the associated actor. Each instance of a “vectorized actor” may be
mapped to an individual thread or process, allowing the replicated instances to be executed in
parallel.

An application developer may consider vectorization within and across actors while writing
kernels for CUDA acceleration. In TDIF, the actor interface need not change as the vectorization
degree changes, which makes it relatively easy for designers to start with the programming
framework provided by CUDA and wrap the resulting vectorized kernel designs in individual
modes of an actor for integration at the dataflow graph level.

In the GPU-targeted version of our Gaussian filtering application, a CUDA kernel is
developed to accelerate the core Gaussian filtering computation (the process mode), and each
thread is assigned to a single pixel, which leads to a set of parallel independent tasks. The threads
are assembled into blocks to maximize data reuse. Each thread uses the same matrix for application
to the local neighborhood, and there is significant overlap in the neighborhoods of the nearby
pixels. To this end, the threads are grouped by tiles in the image. Once the kernel is launched,
threads in a block cooperate to load the matrix, the tile to be processed, and a surrounding
neighborhood of points. The image load itself is vectorized to ensure efficient bursting from

Approved for Public Release; Distribution Unlimited.
12

memory. Because CUDA recognizes the contiguous accesses across threads, the subsequent image
processing operations induce vectorized accesses to global memory.

We use the same canonical scheduler in the GPU implementation that we used in the
simulation phase. The performance of our Gaussian filtering application with and without GPU
acceleration is compared to demonstrate the ability of our design flow to support cross-platform
actor implementation exploration in a manner that is systematically coupled with the simulation-
level application model. We use the same experimental setup — in terms of input and output
images and overall dataflow graph structure — as used in the simulation. To accelerate the
Gaussian Filtering actor, we applied an NVIDIA GTX 285 running CUDA 3.1 and compared the
associated implementation to the simulation system. The measurement results are reported in Table
2.

Table 2. Execution time of the Gaussian filter actor (GF) and the Gaussian filtering application
(App) with and without GPU acceleration.

Filter size 5X5 11X11 21X21 25X25 37X37
GF. CPU (ms) 50 280 1080 1540 3310
GF. GPU (ms) 4.228 4.874 10.257 12.759 21.72
GF. Speedup 11.83 57.45 105.29 120.70 152.39

App. CPU (ms) 70 295 1100 1550 3340
App. GPU (ms) 70 80 140 115 130
App. Speedup 1 3.69 7.86 13.48 25.69

As shown in Table 2, our design flow provides a flexible and efficient transition from the
simulation system to a GPU-accelerated implementation that has superior performance compared to
the corresponding simulation design for these experiments. The actor-level speedup realized by this
acceleration process is in the range of 10X to 100X. However, the application-level speedup levels,
while still significant (up to 25X speedup), are consistently less than the corresponding actor-level
speedup levels. This is due to factors such as context switch overhead and communication cost for
memory movement, which are associated with overall schedule coordination in the application
implementations.

4.4.2. Integral Histogram Computation
The integral histogram (IH) first maps pixels into a set of non-overlapping ranges (“bins”),

and then performs a 2-D scan. Two scan orders, cross-weave and wavefront, are explored in
[Bellens 2011]. The cross-weave scan processes the image in the first dimension (horizontal scan)
followed by a scan in the second dimension (vertical scan). Instead of applying two passes, the
wavefront scan propagates an anti-diagonal wavefront calculation as it operates through a single
scan.

In our experiments, we incorporate use of a tiled image processing approach, where the
image is separated into blocks (tiles) of neighboring pixels. Tiled approaches can be useful for GPU
implementation to enhance parallel execution across multiple threads [NVIDIA 2012]. In particular,
we explore in this case study a tiled integral histogram (TIH) approach for efficient mapping into
GPU implementations.

The overall input image size for IH computation is denoted as (Iw × Ih) pixels, and the
number of histogram bins is denoted as Nb. In TIH computation, an image is tiled as an (Nw × Nh)
rectangular arrangement of tiles, where each tile has a (Tw × Th) rectangular arrangement of pixels.
Here, Tw = Iw /Nw, and Th = Ih/Nh. For each (Tw × Th) tile, the IH is calculated independently.

Approved for Public Release; Distribution Unlimited.
13

After computation of all (Nw × Nh) tile-level IHs, the results can be processed to derive the image-
level IH result.

For GPU-based implementation of IH computation, we design three types of two-
dimensional signal processing actors. These actors are parameterized so that they can be statically
or dynamically configured for the desired type of IH computation. Each of the three actors
employed in our IH case study has a single input port and a single output port. These actors are
described as follows.

First, the Bin-Check actor determines bin membership for pixels. The actor executes pixel
checks of an image column for all bins with CONS = (1, Ih) and PROD = (1, Ih × Nb). Here, and in
the remainder of this section, we denote the two-dimensional (MDSDF) production and
consumption rates of a given actor port as PROD and CONS, respectively.

Second, the Intra-Tile-IH actor computes the IH, where the size of the input tile is specified
by the actor parameters Tw (width) and Th (height), and the scan order is specified by the scan
order parameter of the actor. The supported settings for the scan order parameter are as follows.

• CWS: Compute the IH using a cross-weave scan with tiling. The actor ports satisfy
CONS = PROD = (Tw , Th).

• WFS: Compute the IH using a wavefront scan with tiling. The ports again satisfy
CONS = PROD = (Tw , Th)

• NT: Compute the IH using a cross-weave scan without tiling — that is, calculate the
IH for the input image directly with CONS = PROD = (Tw , Th).
The Inter-Tile-IH actor performs accumulation among tiles with a parameter, called the

accumulation order parameter, to support different scan orders for performing the accumulation. In
particular, horizontal, vertical, and wavefront scans are used for accumulation order settings that are
denoted HS, VS, and WFS, respectively. The actor ports of this actor (regardless of the
accumulation order setting) satisfy CONS = PROD = (Iw, Ih). In addition, the accumulation order
parameter can be set to the value IDLE to bypass any accumulation. While in the IDLE
configuration, the actor performs no computation, and simply passes its input to its output (through
a simple pointer transfer to avoid memory transfer overhead).

Given the actors developed, one can implement the IH application with the MDSDF graph
shown in Figure 3. The desired scan orders and tiling settings can be achieved by setting the actor
parameter values appropriately. In the experiments, we show performance comparisons among
three specific application modes, which are defined by the groups of parameter settings shown in
Table 3. Here, SOP stands for “scan order parameter.”

Figure 3. Multidimensional dataflow graph for image histogram computation.

We customize the implementations for the different application modes by examining their
MDSDF application graph representations separately, and deriving separate DHs to guide the
application mapping processing.

In our experiments, an NVIDIA GTX260 GPU and an Intel Xeon 3 GHz CPU are
used. We compare the three different application modes in Table 3. Table 4 depicts the grid
and block sizes for GPU kernels. Performance is compared for four image sizes (Iw × Ih):
32x32, 64x64, 256x256, and 512x512. Based on the number of GPU threads employed for

Approved for Public Release; Distribution Unlimited.
14

each kernel, we choose a tile size of (32 × 16) in the APP-CWS mode for all image sizes. For
the APP-WFS mode, tile sizes of (4 × 4), (8 × 8), (16 × 8), and (32 × 16) are chosen for
successively larger image sizes. We evaluate the frame processing time, including the time
required for memory transfer from the host to the device (GPU) and the processing time on
the device. We do not include the time for memory transfer from the device back to the host
because many applications that employ IH can be implemented on the GPU efficiently
without need for data transfer back to the CPU.

Table 3. Application modes.

App
mode

Method
V2

SOP
V3

SOP
V4

SOP

APP-CWS cross-weave TIH CWS HS VS
APP-WFS wavefront TIH WFS WFS IDLE
APP-NT no tiling NT IDLE IDLE

Table 4. Grid sizes (upper) and block sizes (lower) derived from DH in our experiments.

mode V2 kernel V3 kernel V4 kernel

APP-CWS
(Nw , NhNb)

(Tw , 1)
(1, Nb)

(Tw , Th)
(1, Nb)

(Tw , Th)

APP-WFS
(1, Nb)

(Nw , Nh)
(1, Nb)

(Tw , Th)
N/A

APP-NT
(1, Nb)
(Iw , 1)

N/A N/A

Figure 4 shows the frame rates (i.e., 1/τ, where τ represents the average time in seconds

required to process a single frame) for various bin sizes ranging from 16 to 1024. From the
experimental results, we see that the GPU implementation of the IH consistently outperforms the
CPU implementation, and that the speedup gains are approximately 35X for image sizes 32x32 and
64x64; 67X for image size 256x256; and 75X for image size 512x512.

From the results, we observe that the best application mode for IH calculation depends on
the image size, and thus parameterized MDSDF application modeling in conjunction with our
multidimensional DH mapping approach is useful design methods to map IH computations
systematically onto the targeted GPU platform. Such a systematic mapping approach leads to
designs that can be mapped and adapted more efficiently, and that are more portable, and easier to
maintain and extend.

Approved for Public Release; Distribution Unlimited.
15

Figure 4. Performance comparisons for different image sizes.

Approved for Public Release; Distribution Unlimited.
16

5. CONCLUSIONS
In this project, we have developed new models and methods, rooted in high-level

dataflow-based models of computation, for optimized design and implementation of multicore
signal processing systems. We have developed new methods for hardware description of
multicore systems, including the CFDF-LWDF-TDIF (CLT) design flow, and the DSG-based
design and implementation of embedded image processing systems (DEIPS) methodology. These
approaches emphasize, respectively, (1) integrated dataflow-based modeling, simulation and
platform-specific optimization processes, and (2) systematic experimentation with and
optimization of high level, dataflow graph schedules on multicore systems. Building on these
methods, as well as on modeling techniques for multidimensional dataflow graphs, we have
developed techniques for efficiently mapping code blocks for signal, image and video processing
applications into optimized parallel implementations. We have demonstrated these new methods
through extensive experimentation with key algorithms and application subsystems in the
domains of video surveillance and pattern recognition. Useful directions for further investigation
that have been motivated by this research include development of dynamic strategies for applying
the models and methods underlying the CLT design flow and DEIPS methodology to adapt
schedules and implementation configurations at run-time based on changes in data characteristics
and application requirements.

Approved for Public Release; Distribution Unlimited.
17

6. REFERENCES

[Bellens 2011] P. Bellens, K. Palaniappan, R. M. Badia, G. Seetharaman, and J. Labarta.
Parallel implementation of the integral histogram. In Proceedings of the International
Conference on Advanced Concepts for Intelligent Vision Systems, 2011.
[Bhattacharyya 2013] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors.
Handbook of Signal Processing Systems. Springer, second edition, 2013. ISBN: 978-1-4614-
6858-5 (Print); 978-1-4614-6859-2 (Online).
[Bhattacharyya 1997] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. APGAN and RPMC:
Complementary heuristics for translating DSP block diagrams into efficient software
implementations. Journal of Design Automation for Embedded Systems, 2(1):33–60, January
1997.
[Bhattacharyya 1996] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.
[Dennis 1975] J. B. Dennis. First version of a data flow procedure language. Technical report,
Laboratory for Computer Science, Massachusetts Institute of Technology, May 1975.
[DSPCAD 2013] Maryland DSPCAD Research Group website.
http://www.ece.umd.edu/DSPCAD/home/dspcad.htm. 2013.
[Haubelt 2007] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubühr, A. Deyhle, A. Hadert,
and J. Teich. A SystemC-based design methodology for digital signal processing systems.
EURASIP Journal on Embedded Systems, 2007:Article ID 47580, 22 pages, 2007.
[Hsu 2005] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis from the dataflow
interchange format. In Proceedings of the International Workshop on Software and Compilers for
Embedded Systems, pages 37-49, Dallas, Texas, September 2005.
[Kahn 1974] G. Kahn. The semantics of a simple language for parallel programming. In
Proceedings of the IFIP Congress, 1974.
[Karp 1966] R. M. Karp and R. E. Miller. Properties of a model for parallel computations:
Determinacy, termination, queuing. SIAM Journal of Applied Math, 14(6), November 1966.
[Kienhuis 2001] B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the
SBF model of computation. In Proceedings of the IEEE Workshop on Signal Processing Systems,
pages 385-394, September 2001.
[Ko 2008] M. Ko, C. Shen, and S. S. Bhattacharyya. Memory-constrained block processing for
DSP software optimization. Journal of Signal Processing Systems, 50(2):163–177, February
2008.
[Ko 2007] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and
E. Deprettere. Parameterized looped schedules for compact representation of execution sequences
in DSP hardware and software implementation. IEEE Transactions on Signal Processing,
55(6):3126–3138, June 2007.

Approved for Public Release; Distribution Unlimited.
18

http://dx.doi.org/10.1007/978-1-4614-6859-2
http://www.ece.umd.edu/DSPCAD/home/dspcad.htm

[Kwon 2004] S. Kwon, H. Jung, and S. Ha. H.264 decoder algorithm specification and simulation
in simulink and PeaCE. In Proceedings of the International SoC Design Conference, pages 9-12,
October 2004.
[Lalgudi 2000] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Optimizing computations
for effective block-processing. ACM Transactions on Design Automation of Electronic Systems,
5(3):604–630, July 2000.
[Lee 1995] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
pages 773-799, May 1995.
[Lee 1989] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real time DSP. In
Proceedings of the Global Telecommunications Conference, volume 2, pages 1279-1283, 1989.
[Lee 1987] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE,
75(9):1235-1245, September 1987.
 [Murthy 2002] P. K. Murthy and E. A. Lee. Multidimensional synchronous dataflow. IEEE
Transactions on Signal Processing, 50(8):2064–2079, August 2002.
[NVIDIA 2012] NVIDIA CUDA C Programming Guide, April 2012. Version 4.2.
[NVIDIA 2007] NVIDIA CUDA Compute Unified Device Architecture: Programming Guide,
Version 1.0, June 2007.
[Owens 2008] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips.
GPU computing. Proceedings of the IEEE, 96(5):879–899, 2008.
[Plishker 2008a] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Functional
DIF for rapid prototyping. In Proceedings of the International Symposium on Rapid System
Prototyping, pages 17–23, Monterey, California, June 2008.
[Plishker 2008b] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous
design in functional DIF. In Proceedings of the International Workshop on Systems,
Architectures, Modeling, and Simulation, pages 157–166, Samos, Greece, July 2008.
[Plishker 2009] W. Plishker, N. Sane, and S. S. Bhattacharyya. A generalized scheduling
approach for dynamic dataflow applications. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, pages 111–116, Nice, France, April 2009.
[Ritz 1993] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of scalable synchronous
dataflow graphs. In Proceedings of the International Conference on Application Specific Array
Processors, October 1993.
[Robbins 2002] C. B. Robbins. Autocoding Toolset software tools for automatic generation of
parallel application software. Technical report, Management, Communications & Control, Inc.,
2002.
[Sriram 2009] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. CRC Press, second edition, 2009.
[Shen 2012] C. Shen, S. Wu, N. Sane, H. Wu, W. Plishker, and S. S. Bhattacharyya. Design and
synthesis for multimedia systems using the targeted dataflow interchange format. IEEE
Transactions on Multimedia, 14(3):630–640, June 2012.
[Shen 2010] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. A lightweight dataflow
approach for design and implementation of SDR systems. In Proceedings of the Wireless

Approved for Public Release; Distribution Unlimited.
19

http://www.mcci-arl-va.com/initialpage.htm
http://www.mcci-arl-va.com/initialpage.htm

Innovation Conference and Product Exposition, pages 640–645, Washington DC, USA,
November 2010.
[Stevens 1997] R. S. Stevens. The processing graph method tool (PGMT). In Proceedings of the
International Conference on Application Specific Systems, Architectures, and Processors, pages
263-271, July 1997.
[TI 2012] Texas Instruments, Inc. TMS320C6678 Multicore Fixed and Floating-Point Digital
Signal Processor Data Manual, February 2012.
[Wu 2013] H.-H. Wu. Modeling and Mapping of Optimized Schedules for Embedded Signal
Processing Systems. PhD thesis, Department of Electrical and Computer Engineering, University
of Maryland, College Park, 2013.
[Wang 2012] L. Wang, C. Shen, G. Seetharaman, K. Palaniappan, and S. S.
Bhattacharyya. Multidimensional dataflow graph modeling and mapping for efficient GPU
implementation. In Proceedings of the IEEE Workshop on Signal Processing Systems,
pages 300–305, Québec City, Canada, October 2012.
[Wu 2011] H. Wu, C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya. A model-based
schedule representation for heterogeneous mapping of dataflow graphs. In Proceedings of the
International Heterogeneity in Computing Workshop, pages 66-77, Anchorage, Alaska, May
2011.
[Wu 2010] H. Wu, H. Kee, N. Sane, W. Plishker, and S. S. Bhattacharyya. Rapid prototyping for
digital signal processing systems using parameterized synchronous dataflow graphs. In
Proceedings of the International Symposium on Rapid System Prototyping, pages 1-7, Fairfax,
Virginia, June 2010. DOI:10.1109/RSP_2010.10.
[Zhou 2013] Z. Zhou, C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based, cross-
platform design flow for DSP applications. In A. Sangiovanni-Vincentelli, H. Zeng, M. Di
Natale, and P. Marwedel, editors, Embedded Systems Development: From Functional Models to
Implementations, pages 41–65. Springer, 2013.
[Zivojnovic 1994] V. Zivojnovic, S. Ritz, and H. Meyr. Retiming of DSP programs for optimum
vectorization. In Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, pages 492–496, April 1994.

Approved for Public Release; Distribution Unlimited.
20

A. APPENDIX A — Publications and Presentations

The following is a list of publications that were produced as outcomes of this project.

[2014-1] H.-H. Wu, C.-C. Shen, H. Kee, N. Sane, W. Plishker, and S. S. Bhattacharyya. Mapping
parameterized dataflow graphs onto FPGA platforms. In R. Chellappa and S. Theodoridis,
editors, Academic Press Library in Signal Processing, volume 4, pages 643-673. Academic press,
Elsevier Ltd., 2014.
[2013-1] L. Wang, C.-C. Shen, S. Wu, and S. S. Bhattacharyya. Parameterized scheduling of
topological patterns in signal processing dataflow graphs. Journal of Signal Processing Systems,
71(3):275-286, June 2013. DOI:10.1007/s11265-012-0719-x.
[2013-2] H.-H. Wu. Modeling and Mapping of Optimized Schedules for Embedded Signal
Processing Systems. PhD thesis, Department of Electrical and Computer Engineering, University
of Maryland, College Park, 2013.
[2013-3] Z. Zhou. Multi-Scale Scheduling Techniques for Signal Processing Systems. PhD thesis,
Department of Electrical and Computer Engineering, University of Maryland, College Park,
2013.
[2013-4] Z. Zhou, C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based, cross-platform
design flow for DSP applications. In A. Sangiovanni-Vincentelli, H. Zeng, M. Di Natale, and
P. Marwedel, editors, Embedded Systems Development: From Functional Models to
Implementations, pages 41-65. Springer, 2013.
[2012-1] L. Wang, C. Shen, G. Seetharaman, K. Palaniappan, and S. S. Bhattacharyya.
Multidimensional dataflow graph modeling and mapping for efficient GPU implementation. In
Proceedings of the IEEE Workshop on Signal Processing Systems, pages 300-305, Québec City,
Canada, October 2012.
[2011-1] S. S. Bhattacharyya, W. Plishker, N. Sane, C. Shen, and H. Wu. Modeling and
optimization of dynamic signal processing in resource-aware sensor networks. In Proceedings of
the Workshop on Resources Aware Sensor and Surveillance Networks in conjunction with IEEE
International Conference on Advanced Video and Signal-Based Surveillance, pages 449-454,
Klagenfurt, Austria, August 2011.
[2011-2] H. Wu, C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya. A model-based
schedule representation for heterogeneous mapping of dataflow graphs. In Proceedings of the
International Heterogeneity in Computing Workshop, pages 66-77, Anchorage, Alaska, May
2011.

The following is a list of presentations that were delivered in connection with this project.

1. L. Wang, Multidimensional dataflow graph modeling and mapping for efficient GPU

implementation. IEEE Workshop on Signal Processing Systems, Québec City, Canada,
October 2012.

Approved for Public Release; Distribution Unlimited.
21

2. S. S. Bhattacharyya, Modeling and optimization of dynamic signal processing in resource-
aware sensor networks. Workshop on Resources Aware Sensor and Surveillance Networks in
conjunction with IEEE International Conference on Advanced Video and Signal-Based
Surveillance, Klagenfurt, Austria, August 2011.

3. H. Wu, A model-based schedule representation for heterogeneous mapping of dataflow
graphs. International Heterogeneity in Computing Workshop, Anchorage, Alaska, May 2011.

B. APPENDIX B — Abstracts
This section provides abstracts of conference, journal, and book chapter publications that were
produced as outcomes of this project.

[2014-1] H.-H. Wu, C.-C. Shen, H. Kee, N. Sane, W. Plishker, and S. S.
Bhattacharyya. Mapping parameterized dataflow graphs onto FPGA platforms. In
R. Chellappa and S. Theodoridis, editors, Academic Press Library in Signal
Processing, volume 4, pages 643-673. Academic press, Elsevier Ltd., 2014

As the speed and logic capacity of field programmable gate arrays (FPGAs) have been improving
steadily, FPGAs have become increasingly attractive for a wide variety of signal processing
systems. FPGAs are increasingly employed in the form of platform FPGAs, which are integrated
circuits that combine significant amounts of configurable logic fabric along with additional
subsystems, such as application-specific accelerators, processor cores, memory blocks, and
input/output interfaces, to facilitate FPGA-based, system-on-chip design. FPGA fabric is also
integrated into application specific integrated circuits (ASICs) to allow implementations that
provide a mix of programmable and custom hardware.

Through support for dynamic reconfiguration, modern FPGAs allow customization of hardware
structures both statically and at run-time, thus allowing streamlining of processing configurations
in response to application requirements or data characteristics that are not known at design time.
In addition to allowing for dynamic changes in system functionality, dynamic reconfiguration,
when carried out effectively, can enhance performance, resource utilization, and energy
efficiency.

However, in addition to such potential for improved operation, incorporating dynamic
reconfiguration into the digital system design space also brings increased design complexity.
Model-based design methodologies have been evolving steadily over the years to help address
issues of design complexity in embedded systems. In model-based design, applications are
represented and analyzed in terms of formal models of computation, which promote analysis of
functionality as well as hardware and software structure at a high level of abstraction. In the
domain of signal processing, model-based techniques based on dataflow models of computation
are particularly popular, and are employed in a growing variety of design tools.

While dataflow techniques allow for high level reasoning about and manipulation of application
dynamics, there are important challenges in mapping dataflow models into FPGA platforms in
ways that systematically and effectively exploit the dynamic reconfiguration capabilities of the
platforms. This paper provides a review of state-of-the-art model-based design techniques and
FPGA implementation techniques for signal processing systems, and explores the challenges

Approved for Public Release; Distribution Unlimited.
22

involved in effectively mapping high level application models into efficient implementations on
dynamically reconfigurable FPGA platforms.

The exploration presented in this paper on mapping models into implementations builds on our
earlier work in this area, which was presented in preliminary form in [Wu 2010]. The
reconfiguration-aware mapping techniques presented in this paper go beyond the developments of
[Wu 2010] in a number of ways. Specifically, this extended paper enhances the hardware
architecture mapping methodology of [Wu 2010] and provides two alternative perspectives on
scheduling. These two perspectives affect important trade-offs between performance and
modularity. An important new aspect integrated into one of these scheduling perspectives
involves integration of the recently-developed dataflow schedule graph model into processes for
FPGA mapping of dynamically reconfigurable signal processing systems.

[2013-1] L. Wang, C.-C. Shen, S. Wu, and S. S. Bhattacharyya. Parameterized
scheduling of topological patterns in signal processing dataflow graphs. Journal of
Signal Processing Systems, 71(3):275-286, June 2013. DOI:10.1007/s11265-012-
0719-x.

In recent work, a graphical modeling construct called “topological patterns” has been shown to
enable concise representation and direct analysis of repetitive dataflow graph sub-structures in the
context of design methods and tools for digital signal processing systems. In this paper, we
present a formal design method for specifying topological patterns and deriving parameterized
schedules from such patterns based on a novel schedule model called the scalable schedule tree.
The approach represents an important class of parameterized schedule structures in a form that is
intuitive for representation and efficient for code generation. Through application case studies
involving image processing and wireless communications, we demonstrate our methods for
topological pattern representation, scalable schedule tree derivation, and associated dataflow
graph code generation.

[2013-4] Z. Zhou, C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based,
cross-platform design flow for DSP applications. In A. Sangiovanni-Vincentelli,
H. Zeng, M. Di Natale, and P. Marwedel, editors, Embedded Systems Development:
From Functional Models to Implementations, pages 41-65. Springer, 2013.

Dataflow methods have been widely explored over the years in the digital signal processing
(DSP) domain to model, design, analyze, implement, and optimize DSP applications, such as
applications in the areas of audio and video data stream processing, digital communications, and
image processing. DSP-oriented dataflow methods provide formal techniques that facilitate
software design, simulation, analysis, verification, instrumentation and optimization for exploring
effective implementations on diverse target platforms. As the landscape of embedded platforms
becomes increasingly diverse, a wide variety of different kinds of devices, including graphics
processing units (GPUs), multicore programmable digital signal processors (PDSPs), and field
programmable gate arrays (FPGAs), must be considered to thoroughly address the design space
for a given application. In this chapter, we discuss design methodologies, based on the core
functional dataflow (CFDF) model of computation, that help engineers to efficiently explore such
diverse design spaces. In particular, we discuss a CFDF-based design flow and associated design
methodology for efficient simulation and implementation of DSP applications. The design flow
supports system formulation, simulation, validation, cross-platform software implementation,

Approved for Public Release; Distribution Unlimited.
23

instrumentation, and system integration capabilities to derive optimized signal processing
implementations on a variety of platforms. We provide a comprehensive specification of the
design flow using the lightweight dataflow (LWDF) and targeted dataflow interchange format
(TDIF) tools, and demonstrate it with case studies on CPU/GPU and multicore PDSP designs that
are geared towards fast simulation, quick transition from simulation to the implementation, high
performance implementation, and power-efficient acceleration, respectively.

[2012-1] L. Wang, C. Shen, G. Seetharaman, K. Palaniappan, and S. S.
Bhattacharyya. Multidimensional dataflow graph modeling and mapping for
efficient GPU implementation. In Proceedings of the IEEE Workshop on Signal
Processing Systems, pages 300-305, Québec City, Canada, October 2012.

Multidimensional synchronous dataflow (MDSDF) provides an effective model of computation
for a variety of multidimensional DSP systems that have static dataflow structures. In this paper,
we develop new methods for optimized implementation of MDSDF graphs on embedded
platforms that employ multiple levels of parallelism to enhance performance at different levels of
granularity. Our approach allows designers to systematically represent and transform multi-level
parallelism specifications from a common, MDSDF-based application level model. We
demonstrate our methods with a case study of image histogram implementation on a graphics
processing unit (GPU). Experimental results from this study show that our approach can be used
to derive fast GPU implementations, and enhance trade-off analysis during design space
exploration.

[2011-1] S. S. Bhattacharyya, W. Plishker, N. Sane, C. Shen, and H. Wu. Modeling
and optimization of dynamic signal processing in resource-aware sensor networks.
In Proceedings of the Workshop on Resources Aware Sensor and Surveillance
Networks in conjunction with IEEE International Conference on Advanced Video
and Signal-Based Surveillance, pages 449-454, Klagenfurt, Austria, August 2011.

Sensor node processing in resource-aware sensor networks is often critically dependent on
dynamic signal processing functionality — i.e., signal processing functionality in which
computational structure must be dynamically assessed and adapted based on time-varying
environmental conditions, operating constraints or application requirements. In dynamic signal
processing systems, it is important to provide flexibility for run-time adaptation of application
behavior and execution characteristics, but in the domain of resource-aware sensor networks,
such flexibility cannot come with significant costs in terms of power consumption overhead or
reduced predictability. In this paper, we review a variety of complementary models of
computation that are being developed as part of the dataflow interchange format (DIF) project to
facilitate efficient and reliable implementation of dynamic signal processing systems. We
demonstrate these methods in the context of resource-aware sensor networks.

[2011-2] H. Wu, C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya. A model-
based schedule representation for heterogeneous mapping of dataflow graphs. In
Proceedings of the International Heterogeneity in Computing Workshop, pages 66-
77, Anchorage, Alaska, May 2011.

Approved for Public Release; Distribution Unlimited.
24

Dataflow-based application specifications are widely used in model-based design methodologies
for signal processing systems. In this paper, we develop a new model called the dataflow schedule
graph (DSG) for representing a broad class of dataflow graph schedules. The DSG provides a
graphical representation of schedules based on dataflow semantics. In conventional approaches,
applications are represented using dataflow graphs, whereas schedules for the graphs are
represented using specialized notations, such as various kinds of sequences or looping constructs.
In contrast, the DSG approach employs dataflow graphs for representing both application models
and schedules that are derived from them.

Our DSG approach provides a precise, formal framework for unambiguously representing,
analyzing, manipulating, and interchanging schedules. We develop detailed formulations of the
DSG representation, and present examples and experimental results that demonstrate the utility of
DSGs in the context of heterogeneous signal processing system design.

Approved for Public Release; Distribution Unlimited.
25

7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

API Application Programming Interface

APGAN Acyclic pairwise grouping of adjacent nodes

BMP Bitmap Image File

CDSG Concurrent DSG

CFDF Core Functional Dataflow

CLT CFDF-LWDF-TDIF

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DEIPS DSG-based design and implementation of embedded image processing systems

DH Design Hierarchy

DIF Dataflow Interchange Format

DSG Dataflow Schedule Graph

DSP Digital Signal Processing

FCV Filter Coefficient Vector

FIFO First-In-First-Out

FPGA Field-Programmable Gate Array

GF Gaussian Filter

GHz Gigahertz

GPU Graphics Processing Unit

GST Generalized Schedule Tree

HSDF Homogeneous Synchronous Dataflow

Approved for Public Release; Distribution Unlimited.
26

HS Horizontal Scan

IH Integral Histogram

LWDF Lightweight Dataflow

MDSDF Multidimensional Synchronous Dataflow

MPSoC Multiprocessor System-on-Chip

PDSP Programmable Digital Signal Processor

PGM Processing Graph Method

SDF Synchronous Dataflow

SDM Signal-processing-oriented Dataflow Model (of computation)

SDSG Sequential Dataflow Schedule Graph

SRAM Static Random Access Memory

STC Store Coefficients

TDIF Targeted DIF

TDL The DIF Language

TDP The DIF Package

TI Texas Instruments

TIH Tiled Integral Histogram

VS Vertical Scan

WFS Wavefont Scan

Approved for Public Release; Distribution Unlimited.
27

	1. SUMMARY
	2. INTRODUCTION
	3. METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1. Dataflow Interchange Format
	3.2. Dataflow Modeling for Signal Processing Systems
	3.3. The DIF Language (TDL)
	3.4. Synchronization Graphs
	4. RESULTS AND DISCUSSION
	4.1. Objectives
	4.2. Hardware Description of Multiprocessor Systems
	4.2.1. CLT Design Flow
	4.2.2. DEIPS Methodology
	4.3. Systematic Mapping of Code Blocks onto Hardware
	4.3.1. Mapping Methods in the CLT Design Flow
	4.3.2. Hierarchical Mapping of Multidimensional Dataflow Specifications
	4.4. Customization and Demonstration based on Video Surveillance and Pattern Recognition Computations
	4.4.1. Gaussian Filtering
	4.4.1.1. Simulation
	4.4.1.2. Implementation
	4.4.2. Integral Histogram Computation
	5. CONCLUSIONS
	6. REFERENCES
	A. APPENDIX A — Publications and Presentations
	B. APPENDIX B — Abstracts
	7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

